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PREFACE

For the third edition of Heat Transfer Anthony Mills is joined by Carlos Coimbra
as a co-author. Professor Coimbra brings to this venture the perspective and skills
of a younger generation of heat transfer educators and his own special expertise in
areas of heat transfer research. The second editions of the texts by Anthony Mills
included Heat Transfer, Basic Heat and Mass Transfer and Mass Transfer, in order
to provide texts suitable for a variety of courses and instructor’s needs. In bringing
out a third edition of this material we are added the new title Basic Heat Transfer in
response to requests for a text suitable for a junior or senior level course that covers
heat transfer only. This goal was accomplished by essentially removing the chapter
on mass transfer from Basic Heat and Mass Transfer, which reduced the text length
from 1001 pages to 828 pages. We have designated Basic Heat Transfer as a third
edition to avoid possible confusion since it is based on the third edition updated
material of the textbook series. The third edition of Heat Transfer can be used for
both introductory and more advanced (including graduate) courses.

Sixteen years after the second edition was published, a new edition of these ma-
terials is perhaps overdue, but in a mature field such as heat transfer, it is not at all
clear what topics should be introduced, and then what topics should be removed to
retain an acceptable length for an introductory text. As a result, our main motivation
in publishing a third edition has been a different consideration.

Our concern was the excessive prices of college textbooks, which in recent years
have destroyed the established role played by these texts in the education of engi-
neering students. Traditionally, students bought a required textbook, became familiar
with it in taking the course, and then retained the book as a tool for subsequent
courses and an engineering career. Nowadays the pattern is for a student to sell the
textbooks back to the university bookstore at the end of the course in order to obtain
funds for buying textbooks for the next term. Alternatively, electronic versions of
portions of the text are used during the course, or course readers containing selected
material from the text may be used. It is particularly frustrating to instructors of
subsequent design and laboratory courses to find that the students no longer have
appropriate textbooks. Also, the traditional role formerly played by textbooks as
professional manuals for engineering practice has been significantly affected. Basic
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vi PREFACE

methodology and data are more easily and reliably obtained from a familiar text than
from an internet search.

In an attempt to mitigate these problems and improve the experience of our engi-
neering students we decided to retain creative and publishing rights over the content
of this book for this and future editions. A company called Temporal Publishing LLC
was created to publish quality engineering textbooks at more reasonable prices.1

This entailed first converting the previous edition to LaTeX, which we could then
modify efficiently. Since the conversion proved to be a major project in itself, our
objective with this third edition is rather modest. We have focused on corrections,
clarifications, minor updates and the production of a dedicated companion website.2

We envisage this website to be an integral part of the project and hope to make it
a really useful adjunct to the text, for both students and instructors. The website
contains links to the dedicated software HT that automates most of the calculations
done in the text, instructor aides (such as complete solutions manual for adoptees
of the text, additional examples and exercises, presentations, etc.) and a compilation
of answers to odd-numbered exercises to assist self-study by students. We will be
continuously adding new technical content to the website while we work on future
editions of the textbook. Also, given our closer association with the print-on-demand
process, it will be easy for the authors to implement small improvements in subse-
quent printings of this edition. We certainly welcome input and suggestions from
users to improve our product.

In preparing this new edition we have had valuable assistance from:

Marius Andronie

Kuang Chao

Kaori Yoshida Coimbra

We would like to dedicate the collaborative effort of bringing a new edition of
Heat Transfer to the memory of Prof. Donald K. Edwards, our teacher.

A. F. Mills
Santa Barbara, CA
amills@ucla.edu

C. F. M. Coimbra
La Jolla, CA
ccoimbra@ucsd.edu

1 Books can be ordered directly at discounted prices at www.temporalpublishing.com
2 www.temporalpublishing.com/ht



PREFACE TO THE
SECOND EDITION

Heat Transfer has been written for students in mechanical, aerospace, nuclear, and
chemical engineering programs. Apart from the usual lower-division mathematics
and science courses, the preparation required of the student includes introductory
courses in fluid mechanics and thermodynamics, and preferably the usual junior-
level engineering mathematics course. The ordering of the material and the pace at
which it is presented have been carefully chosen so that the beginning student can
proceed from the most elementary concepts to those that are more difficult. As a
result, the book should prove to be quite versatile. It can be used as the text for
an introductory course during the junior or senior year, although the coverage is
sufficiently comprehensive for use as a reference work in undergraduate laboratory
and design courses, and by the practicing engineer.

Throughout the text, the emphasis is on engineering calculations, and each topic
is developed to a point that will provide students with the tools needed to practice the
art of design. The worked examples not only illustrate the use of relevant equations
but also teach modeling as both an art and science. A supporting feature of Heat
Transfer is the fully integrated software available from the author’s website3. The
software is intended to serve primarily as a tool for the student, both at college and
after graduation in engineering practice. The programs are designed to reduce the
effort required to obtain reliable numerical results and thereby increase the efficiency
and effectiveness of the engineer. I have found the impact of the software on the
educational process to be encouraging. It is now possible to assign more meaningful
and interesting problems, because the students need not get bogged down in lengthy
calculations. Parametric studies, which are the essence of engineering design, are
relatively easily performed. Of course, computer programs are not a substitute for
a proper understanding. The instructor is free to choose the extent to which the

3 http://www.mae.ucla.edu/people/faculty/anthony-mills
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viii PREFACE TO THE SECOND EDITION

software is used by students because of the unique exact correspondence between the
software and the text material. My practice has been to initially require students to
perform various hand calculations, using the computer to give immediate feedback.
For example, they do not have to wait a week or two until homework is returned
to find that a calculated convective heat transfer coefficient was incorrect because a
property table was misread.

The extent to which engineering design should be introduced in a heat transfer
course is a controversial subject. It is my experience that students can be best intro-
duced to design methodology through an increased focus on equipment such as heat
exchangers: Heat Transfer presents more extensive coverage of exchanger design
than do comparable texts. In the context of such equipment one can conveniently
introduce topics such as synthesis, parametric studies, tradeoffs, optimization, eco-
nomics, and material or health constraints. The computer program HEX2 assists the
student to explore the consequences of changing the many parameters involved in
the design process. If an appropriate selection of this material is taught, I am confi-
dent that Accreditation Board for Engineering and Technology guidelines for design
content will be met. More important, I believe that engineering undergraduates are
well served by being exposed to this material, even if it means studying somewhat
less heat transfer science.

More than 300 new exercises have been added for this edition. They fall into
two categories: (1) relatively straightforward exercises designed to help students
understand fundamental concepts, and (2) exercises that introduce new technology
and that have a practical flavor. The latter play a very important role in motivating
students; considerable care has been taken to ensure that they are realistic in terms
of parameter values and focus on significant aspects of real engineering problems.
The practical exercises are first steps in the engineering design process and many
have substantial design content. Since environmental considerations have required
the phasing out of CFC refrigerants, R-12 and R-113 property data, worked examples
and exercises, have been replaced with corresponding material for R-22 and R-134a.

Heat Transfer contains the following chapters and appendixes:

1. Introduction and Elementary Heat Transfer

2. Steady One-Dimensional Heat Conduction

3. Multidimensional and Unsteady Conduction

4. Convection Fundamentals and Correlations

5. Convection Analysis

6. Thermal Radiation

7. Condensation, Evaporation, and Boiling

8. Heat Exchangers

A. Property Data

B. Units, Conversion Factors, and Mathematics

C. Charts
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In a first course, the focus is always on the key topics of conduction, convection,
radiation, and heat exchangers. Particular care has been taken to order the material on
these topics from simpler to more difficult concepts. In Chapter 2 one-dimensional
conduction and fins are treated before deriving the general partial differential heat
conduction equation in Chapter 3. In Chapter 4 the student is taught how to use con-
vection correlations before encountering the partial differential equations governing
momentum and energy conservation in Chapter 5. In Chapter 6 radiation properties
are introduced on a total energy basis and the shape factor is introduced as a geo-
metrical concept to allow engineering problem solving before having to deal with
the directional and spectral aspects of radiation. Also, wherever possible, advanced
topics are located at the ends of chapters, and thus can be easily omitted in a first
course.

Chapter 1 is a brief but self-contained introduction to heat transfer. Students are
given an overview of the subject and some material needed in subsequent chapters.
Interesting and relevant engineering problems can then be introduced at the earli-
est opportunity, thereby motivating student interest. All the exercises can be solved
without accessing the property data in Appendix A.

Chapters 2 and 3 present a relatively conventional treatment of heat conduction,
though the outdated and approximate Heissler and Gröber charts are replaced by
exact charts and the computer program COND2. The treatment of finite-difference
numerical methods for conduction has been kept concise and is based on finite-
volume energy balances. Students are encouraged to solve the difference equations
by writing their own computer programs, or by using standard mathematics software
such as Mathcad or MATLAB.

In keeping with the overall philosophy of the book, the objective of Chapter 4
is to develop the students’ ability to calculate convective heat transfer coefficients.
The physics of convection is explained in a brief introduction, and the heat transfer
coefficient is defined. Dimensional analysis using the Buckingham pi theorem is
used to introduce the required dimensional groups and to allow a discussion of the
importance of laboratory experiments. A large number of correlation formulas fol-
low; instructors can discuss selected geometrical configurations as class time allows,
and students can use the associated computer program CONV to reliably calculate
heat transfer coefficients and skin friction coefficients or pressure drop for a wide
range of configurations. Being able to do parametric studies with a wide variety of
correlations enhances the students’ understanding more than can be accomplished
by hand calculations. Design alternatives can also be explored using CONV.

Analysis of convection is deferred to Chapter 5: simple laminar flows are consid-
ered, and high-speed flows are treated first in Section 5.2, since an understanding of
the recovery temperature concept enhances the students’ problem-solving capabili-
ties. Each of the topics in Sections 5.3 through 5.8 are essentially self-contained, and
the instructor can select as few or as many as required.

Chapter 6 focuses on thermal radiation. Radiation properties are initially defined
on a total energy basis, and the shape factor is introduced as a simple geometrical
concept. This approach allows students to immediately begin solving engineering
radiation exchange problems. Only subsequently need they tackle the more difficult
directional and spectral aspects of radiation. For gas radiation, the ubiquitous Hottel
charts have been replaced by the more accurate methods developed by Edwards; the
accompanying computer program RAD3 makes their use particularly simple.
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The treatment of condensation and evaporation heat transfer in Chapter 7 has
novel features, while the treatment of pool boiling is quite conventional. Forced
convection boiling and condensation is taken far enough to facilitate calculation
of both pressure drop and heat transfer. Heatpipes are dealt with in some detail,
enabling students to calculate the wicking limit and to analyze the performance of
simple gas-controlled heatpipes.

Chapter 8 expands the presentation of the thermal analysis of heat exchangers
beyond the customary and includes regenerators and the effect of axial conduction
on thermal performance. The treatment of heat exchanger design includes the cal-
culation of exchanger pressure drop, thermal-hydraulic design, heat transfer surface
selection for compact heat exchangers, and economic analysis leading to the calcu-
lation of the benefit-cost differential associated with heat recovery operations. The
computer program HEX2 serves to introduce students to computer-aided design of
heat exchangers.

The author and publisher appreciate the efforts of all those who provided input
that helped develop and improve the text. We remain dedicated to further refining
the text in future editions, and encourage you to contact us with any suggestions or
comments you might have.

A. F. Mills
amills@ucla.edu

Bill Stenquist
Executive Editor
william_stenquist@prenhall.com
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NOTES TO THE
INSTRUCTOR
AND STUDENT

These notes have been prepared to assist the instructor and student and should be
read before the text is used. Topics covered include conventions for artwork and
mathematics, the format for example problems, organization of the exercises, com-
ments on the thermophysical property data in Appendix A, and a guide for use of
the accompanying computer software.

ARTWORK

Conventions used in the figures are as follows.

➝ Conduction or convection heat flow
! Radiation heat flow
—–! Fluid flow

MATHEMATICAL SYMBOLS

Symbols that may need clarification are as follows.

≃ Nearly equal
∼ Of the same order of magnitude∣∣

x
All quantities in the term to the left of the bar are evaluated at x

xiii
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EXAMPLES

Use of standard format for presenting the solutions of engineering problems is a
good practice. The format used for the examples in Heat Transfer, which is but one
possible approach, is as follows.

Problem statement

Solution

Given:

Required:

Assumptions: 1.
2. etc.

Sketch (when appropriate)

Analysis (diagrams when appropriate)

Properties evaluation

Calculations

Results (tables or graphs when appropriate)

Comments

1.
2. etc.

It is always assumed that the problem statement precedes the solution (as in the
text) or that it is readily available (as in the Solutions Manual). Thus, the Given and
Required statements are concise and focus on the essential features of the problem.
Under Assumptions, the main assumptions required to solve the problem are listed;
when appropriate, they are discussed further in the body of the solution. A sketch of
the physical system is included when the geometry requires clarification; also, ex-
pected temperature and concentration profiles are given when appropriate. (Schemat-
ics that simply repeat the information in the problem statements are used sparingly.
We know that many instructors always require a schematic. Our view is that students
need to develop an appreciation of when a figure or graph is necessary, because
artwork is usually an expensive component of engineering reports. For example,
we see little use for a schematic that shows a 10 m length of straight 2 cm–O.D.
tube.) The analysis may consist simply of listing some formulas from the text, or it
may require setting up a differential equation and its solution. Strictly speaking, a
property should not be evaluated until its need is identified by the analysis. However,
in routine calculations, such as evaluation of convective heat transfer coefficients, it
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is often convenient to list all the property values taken from an Appendix A table in
one place. The calculations then follow with results listed, tabulated, or graphed as
appropriate. Under Comments, the significance of the results can be discussed, the
validity of assumptions further evaluated, or the broader implications of the problem
noted.

In presenting calculations for the examples in Heat Transfer, we have rounded
off results at each stage of the calculation. If additional figures are retained for the
complete calculations, discrepancies in the last figure will be observed. Since many
of the example calculations are quite lengthy, we believe our policy will facilitate
checking a particular calculation step of concern. As is common practice, we have
generally given results to more significant figures than is justified, so that these
results can be conveniently used in further calculations. It is safe to say that no
engineering heat transfer calculation will be accurate to within 1%, and that most
experienced engineers will be pleased with results accurate to within 10% or 20%.
Thus, preoccupation with a third or fourth significant figure is misplaced (unless
required to prevent error magnification in operations such as subtraction). Funda-
mental constants are rounded off to no more than five significant figures.

EXERCISES

The diskette logo next to an exercise statement indicates that it can be solved using
the Heat Transfer software, and that the sample solution provided to the instruc-
tor has been prepared accordingly. There are many additional exercises that can be
solved using the software but that do not have the logo designation. These exercises
are intended to give the student practice in hand calculations, and thus the sample
solutions were also prepared manually.

The exercises have been ordered to correspond with the order in which the mate-
rial is presented in the text, rather than in some increasing degree of difficulty. Since
the range of difficulty of the exercises is considerable, the instructor is urged to
give students guidance in selecting exercises for self-study. Answers to all exercises
are listed in the Solutions Manual provided to instructors. Odd- and even-numbered
exercises are listed separately; answers to odd-numbered exercises are available to
students on the book website.

PROPERTY DATA

A considerable quantity of property data has been assembled in Appendix A. Key
sources are given as references or are listed in the bibliography. Since Heat Transfer
is a textbook, our primary objective in preparing Appendix A was to provide the
student with a wide range of data in an easily used form. Whenever possible, we
have used the most accurate data that we could obtain, but accuracy was not always
the primary concern. For example, the need to have consistent data over a wide
range of temperature often dictated the choice of source. All the tables are in SI
units, with temperature in kelvins. The computer program UNITS can be used for
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conversions to other systems of units. Appendix A should serve most needs of the
student, as well as of the practicing engineer, for doing routine calculations. If a heat
transfer research project requires accurate and reliable thermophysical property data,
the prudent researcher should carefully check relevant primary data sources.

SOFTWARE

The HT software has a menu that describes the content of each program. The pro-
grams are also described at appropriate locations in the text. The input format and
program use are demonstrated in example problems in the text. Use of the text index
is recommended for locating the program descriptions and examples. There is a one-
to-one correspondence between the text and the software. In principle, all numbers
generated by the software can be calculated manually from formulas, graphs, and
data given in the text. Small discrepancies may be seen when interpolation in graphs
or property tables is required, since some of the data are stored in the software as
polynomial curve fits.

The software facilitates self-study by the student. Practice hand calculations
can be immediately checked using the software. When programs such as CONV,
PHASE, and BOIL are used, properties evaluation and intermediate calculation steps
can also be checked when the final results do not agree.

Since there is a large thermophysical property database stored in the software
package, the programs can also be conveniently used to evaluate these properties
for other purposes. For example, in CONV both the wall and fluid temperatures
can be set equal to the desired temperature to obtain property values required for
convection calculations. We can even go one step further when evaluating a con-
vective heat transfer coefficient from a new correlation not contained in CONV: if a
corresponding item is chosen, the values of relevant dimensionless groups can also
be obtained from CONV, further simplifying the calculations.

Presently the HT software is available in both Windows and DOS versions. The
latter can be used on both Mac OS X and Windows platforms with DOS emulators.
Some examples in the text show sample inputs from the DOS version of the software.
For the Windows version the inputs are essentially the same.
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1.1 INTRODUCTION

The process of heat transfer is familiar to us all. On a cold day we put on more
clothing to reduce heat transfer from our warm body to cold surroundings. To make
a cup of coffee we may plug in a kettle, inside which heat is transferred from an elec-
trical resistance element to the water, heating the water until it boils. The engineering
discipline of heat transfer is concerned with methods of calculating rates of heat
transfer. These methods are used by engineers to design components and systems
in which heat transfer occurs. Heat transfer considerations are important in almost
all areas of technology. Traditionally, however, the discipline that has been most
concerned with heat transfer is mechanical engineering because of the importance
of heat transfer in energy conversion systems, from coal-fired power plants to solar
water heaters.

Many thermal design problems require reducing heat transfer rates by providing
suitable insulation. The insulation of buildings in extreme climates is a familiar ex-
ample, but there are many others. The space shuttle has thermal tiles to insulate the
vehicle from high-temperature air behind the bow shock wave during reentry into
the atmosphere. Cryostats, which maintain the cryogenic temperatures required for
the use of superconductors, must be effectively insulated to reduce the cooling load
on the refrigeration system. Often, the only way to ensure protection from severe
heating is to provide a fluid flow as a heat “sink”. Nozzles of liquid-fueled rocket
motors are cooled by pumping the cold fuel through passages in the nozzle wall be-
fore injection into the combustion chamber. A critical component in a fusion reactor
is the “first wall” of the containment vessel, which must withstand intense heating
from the hot plasma. Such walls may be cooled by a flow of helium gas or liquid
lithium.

A common thermal design problem is the transfer of heat from one fluid to an-
other. Devices for this purpose are called heat exchangers. A familiar example is
the automobile radiator, in which heat is transferred from the hot engine coolant to
cold air blowing through the radiator core. Heat exchangers of many different types
are required for power production and by the process industries. A power plant,
whether the fuel be fossil or nuclear, has a boiler in which water is evaporated to
produce steam to drive the turbines, and a condenser in which the steam is con-
densed to provide a low back pressure on the turbines and for water recovery. The
condenser patented by James Watt in 1769 more than doubled the efficiency of steam
engines then being used and set the Industrial Revolution in motion. The common
vapor cycle refrigeration or air-conditioning system has an evaporator where heat is
absorbed at low temperature and a condenser where heat is rejected at a higher tem-
perature. On a domestic refrigerator, the condenser is usually in the form of a tube
coil with cooling fins to assist transfer of heat to the surroundings. An oil refinery
has a great variety of heat transfer equipment, including rectification columns and
thermal crackers. Many heat exchangers are used to transfer heat from one process
stream to another, to reduce the total energy consumption by the refinery.

Often the design problem is one of thermal control, that is, maintaining the op-
erating temperature of temperature-sensitive components within a specified range.
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Cooling of all kinds of electronic gear is an example of thermal control. The develop-
ment of faster computers is now severely constrained by the difficulty of controlling
the temperature of very small components, which dissipate large amounts of heat.
Thermal control of temperature-sensitive components in a communications satellite
orbiting the Earth is a particularly difficult problem. Transistors and diodes must not
overheat, batteries must not freeze, telescope optics must not lose alignment due to
thermal expansion, and photographs must be processed at the proper temperature
to ensure high resolution. Thermal control of space stations present even greater
problems, since reliable life-support systems are also necessary.

From the foregoing examples, it is clear that heat transfer involves a great variety
of physical phenomena and engineering systems. The phenomena must first be un-
derstood and quantified before a methodology for the thermal design of an engineer-
ing system can be developed. Chapter 1 is an overview of the subject and introduces
key topics at an elementary level. In Section 1.2, the distinction between the subjects
of heat transfer and thermodynamics is explained. The first law of thermodynamics is
reviewed, and closed- and open-system forms required for heat transfer analysis are
developed. Section 1.3 introduces the three important modes of heat transfer: heat
conduction, thermal radiation, and heat convection. Some formulas are developed
that allow elementary heat transfer calculations to be made. In practical engineering
problems, these modes of heat transfer usually occur simultaneously. Thus, in Sec-
tion 1.4, the analysis of heat transfer by combined modes is introduced. Engineers
are concerned with the changes heat transfer processes effect in engineering systems
and, in Section 1.5, an example is given in which the first law is applied to a simple
model closed system to determine the temperature response of the system with time.
Finally, in Section 1.6, the International System of units (SI) is reviewed, and the
units policy that is followed in the text is discussed.

1.2 HEAT TRANSFER AND ITS RELATION TO THERMODYNAMICS

When a hot object is placed in cold surroundings, it cools: the object loses internal
energy, while the surroundings gain internal energy. We commonly describe this
interaction as a transfer of heat from the object to the surrounding region. Since
the caloric theory of heat has been long discredited, we do not imagine a “heat
substance” flowing from the object to the surroundings. Rather, we understand that
internal energy has been transferred by complex interactions on an atomic or sub-
atomic scale. Nevertheless, it remains common practice to describe these interactions
as transfer, transport, or flow, of heat. The engineering discipline of heat transfer is
concerned with calculation of the rate at which heat flows within a medium, across an
interface, or from one surface to another, as well as with the calculation of associated
temperatures.

It is important to understand the essential difference between the engineering dis-
cipline of heat transfer and what is commonly called thermodynamics. Classical
thermodynamics deals with systems in equilibrium. Its methodology may be used
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to calculate the energy required to change a system from one equilibrium state to
another, but it cannot be used to calculate the rate at which the change may occur.
For example, if a 1 kg ingot of iron is quenched from 1000˚C to 100˚C in an oil
bath, thermodynamics tells us that the loss in internal energy of the ingot is mass
(1 kg) × specific heat capacity (∼450 J/kg K) × temperature change (900 K), or
approximately 405 kJ. But thermodynamics cannot tell us how long we will have to
wait for the temperature to drop to 100˚C. The time depends on the temperature of
the oil bath, physical properties of the oil, motion of the oil, and other factors. An
appropriate heat transfer analysis will consider all of these.

Analysis of heat transfer processes does require using some thermodynamics
concepts. In particular, the first law of thermodynamics is used, generally in par-
ticularly simple forms since work effects can often be ignored. The first law is a
statement of the principle of conservation of energy, which is a basic law of physics.
This principle can be formulated in many ways by excluding forms of energy that
are irrelevant to the problem under consideration, or by simply redefining what is
meant by energy. In heat transfer, it is common practice to refer to the first law as
the energy conservation principle or simply as an energy or heat balance when no
work is done. However, as in thermodynamics, it is essential that the correct form
of the first law be used. The student must be able to define an appropriate system,
recognize whether the system is open or closed, and decide whether a steady state
can be assumed. Some simple forms of the energy conservation principle, which find
frequent use in this text, follow.

A closed system containing a fixed mass of a solid is shown in Fig. 1.1. The
system has a volume V [m3], and the solid has a density ρ [kg/m3]. There is net heat
transfer into the system at a rate of Q̇ [J/s or W], and heat may be generated within
the solid, for example, by nuclear fission or by an electrical current, at a rate Q̇v [W].
Solids may be taken to be incompressible, so no work is done by or on the system.
The principle of conservation of energy requires that over a time interval ∆ t [s],

Change in internal energy
within the system =

Net heat transferred
into the system +

Heat generated
within the system

∆U = Q̇∆t + Q̇v ∆t (1.1)

Dividing by ∆t and letting ∆t go to zero gives

dU

dt
= Q̇ + Q̇v

Figure 1.1 Application of the energy
conservation principle to a closed system.
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The system contains a fixed mass (ρV ); thus, we can write dU = ρVdu, where u
is the specific internal energy [J/kg]. Also, for an incompressible solid, du = cvdT ,
where cv is the constant-volume specific heat1 [J/kg K], and T [K] is tempera-
ture. Since the solid has been taken to be incompressible, the constant-volume and
constant-pressure specific heats are equal, so we simply write du = cdT to obtain

ρV c
dT

dt
= Q̇ + Q̇v (1.2)

Equation (1.2) is a special form of the first law of thermodynamics that will be used
often in this text. It is written on a rate basis; that is, it gives the rate of change
of temperature with time. For some purposes, however, it will prove convenient to
return to Eq. (1.1) as a statement of the first law.

Figure 1.2 Application of the energy conservation principle to a steady-flow open system.

Figure 1.2 shows an open system (or control volume), for which a useful form of
the first law is the steady-flow energy equation. It is used widely in the thermody-
namic analysis of equipment such as turbines and compressors. Then

ṁ∆

(
h+

V 2

2
+gz

)
= Q̇+Ẇ (1.3)

where ṁ [kg/s] is the mass flow rate, h [J/kg] is the specific enthalpy, V [m/s] is
velocity, g [m/s2] is the gravitational acceleration, z is elevation [m], Q̇ [W] is the net
rate of heat transfer, as before, and Ẇ [W] is the rate at which external (shaft) work
is done on the system.2 Notice that the sign convention here is that external work
done on the system is positive; the opposite sign convention is also widely used. The
symbol ∆X means Xout −Xin, or the change in X . Equation (1.3) applies to a pure

1 The terms specific heat capacity and specific heat are equivalent and interchangeable in the heat transfer literature.
2 Equation (1.3) has been written as if h, V , and z are uniform in the streams crossing the control volume boundary.
Often such an assumption can be made; if not, an integration across each stream is required to give appropriate average
values.
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substance when conditions within the system, such as temperature and velocity, are
unchanging over some appropriate time interval. Heat generation within the system
has not been included. In many types of heat transfer equipment, no external work
is done, and changes in kinetic and potential energy are negligible; Eq. (1.3) then
reduces to

ṁ∆h = Q̇ (1.4)

The specific enthalpy h is related to the specific internal energy u as

h = u+Pv (1.5)

where P [N/m2 or Pa] is pressure, and v is specific volume [m3/kg]. Two limit forms
of ∆h are useful. If the fluid enters the system at state 1 and leaves at state 2:

1. For ideal gases with Pv = RT ,

∆h =
∫ T2

T1

cpdT (1.6a)

where R [J/kg K] is the gas constant and cp [J/kg K] is the constant-pressure
specific heat.

2. For incompressible liquids with ρ = 1/v = constant

∆h =
∫ T2

T1

cdT +
P2 −P1

ρ
(1.6b)

where c = cv = cp. The second term in Eq. (1.6b) is often negligible as will be
assumed throughout this text.

Equation (1.4) is the usual starting point for the heat transfer analysis of steady-state
open systems.

The second law of thermodynamics tells us that if two objects at temperatures T1
and T2 are connected, and if T1 > T2, then heat will flow spontaneously and irre-
versibly from object 1 to object 2. Also, there is an entropy increase associated with
this heat flow. As T2 approaches T1, the process approaches a reversible process, but
simultaneously the rate of heat transfer approaches zero, so the process is of little
practical interest. All heat transfer processes encountered in engineering are irre-
versible and generate entropy. With the increasing realization that energy supplies
should be conserved, efficient use of available energy is becoming an important con-
sideration in thermal design. Thus, the engineer should be aware of the irreversible
processes occurring in the system under development and understand that the opti-
mal design may be one that minimizes entropy generation due to heat transfer and
fluid flow. Most often, however, energy conservation is simply a consideration in the
overall economic evaluation of the design. Usually there is an important trade-off
between energy costs associated with the operation of the system and the capital
costs required to construct the equipment.
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1.3 MODES OF HEAT TRANSFER

In thermodynamics, heat is defined as energy transfer due to temperature gradients
or differences. Consistent with this viewpoint, thermodynamics recognizes only two
modes of heat transfer: conduction and radiation. For example, heat transfer across
a steel pipe wall is by conduction, whereas heat transfer from the Sun to the Earth
or to a spacecraft is by thermal radiation. These modes of heat transfer occur on a
molecular or subatomic scale. In air at normal pressure, conduction is by molecules
that travel a very short distance (∼ 0.065µm) before colliding with another molecule
and exchanging energy. On the other hand, radiation is by photons, which travel
almost unimpeded through the air from one surface to another. Thus, an important
distinction between conduction and radiation is that the energy carriers for conduc-
tion have a short mean free path, whereas for radiation the carriers have a long mean
free path. However, in air at the very low pressures characteristic of high-vacuum
equipment, the mean free path of molecules can be much longer than the equipment
dimensions, so the molecules travel unimpeded from one surface to another. Then
heat transfer by molecules is governed by laws analogous to those for radiation.

A fluid, by virtue of its mass and velocity, can transport momentum. In addition,
by virtue of its temperature, it can transport energy. Strictly speaking, convection
is the transport of energy by bulk motion of a medium (a moving solid can also
convect energy in this sense). In the steady-flow energy equation, Eq. (1.3), convec-
tion of internal energy is contained in the term ṁ∆h, which is on the left-hand side
of the equation, and heat transfer by conduction and radiation is on the right-hand
side, as Q̇. However, it is common engineering practice to use the term convection
more broadly and describe heat transfer from a surface to a moving fluid also as
convection, or convective heat transfer, even though conduction and radiation play a
dominant role close to the surface, where the fluid is stationary. In this sense, convec-
tion is usually regarded as a distinct mode of heat transfer. Examples of convective
heat transfer include heat transfer from the radiator of an automobile or to the skin
of a hypersonic vehicle. Convection is often associated with a change of phase, for
example, when water boils in a kettle or when steam condenses in a power plant
condenser. Owing to the complexity of such processes, boiling and condensation are
often regarded as distinct heat transfer processes.

The hot water home heating system shown in Fig. 1.3 illustrates the modes of heat
transfer. Hot water from the furnace in the basement flows along pipes to radiators
located in individual rooms. Transport of energy by the hot water from the basement
is true convection as defined above; we do not call this a heat transfer process. Inside
the radiators, there is convective heat transfer from the hot water to the radiator shell,
conduction across the radiator shell, and both convective and radiative heat transfer
from the hot outer surface of the radiator shell into the room. The convection is
natural convection: the heated air adjacent to the radiator surface rises due to its
buoyancy, and cooler air flows in to take its place. The radiators are heat exchang-
ers. Although commonly used, the term radiator is misleading since heat transfer



8 CHAPTER 1 INTRODUCTION AND ELEMENTARY HEAT TRANSFER

Figure 1.3 A hot-water home heating system illustrating the modes of heat transfer.

from the shell surface can be predominantly by convection rather than by radiation
(see Exercise 1–20). Heaters that transfer heat predominantly by radiation are, for
example, electrical resistance wire units.

Each of the three important subject areas of heat transfer will now be introduced:
conduction, in Section 1.3.1; radiation, in Section 1.3.2; and convection, in Section
1.3.3.

1.3.1 Heat Conduction

On a microscopic level, the physical mechanisms of conduction are complex, en-
compassing such varied phenomena as molecular collisions in gases, lattice vibra-
tions in crystals, and flow of free electrons in metals. However, if at all possible,
the engineer avoids considering processes at the microscopic level, preferring to use
phenomenological laws, at a macroscopic level. The phenomenological law gov-
erning heat conduction was proposed by the French mathematical physicist J. B.
Fourier in 1822. This law will be introduced here by considering the simple problem
of one-dimensional heat flow across a plane wall—for example, a layer of insu-
lation.3 Figure 1.4 shows a plane wall of surface area A and thickness L, with its
face at x = 0 maintained at temperature T1 and the face at x = L maintained at T2.
The heat flow Q̇ through the wall is in the direction of decreasing temperature: if

3 In thermodynamics, the term insulated is often used to refer to a perfectly insulated (zero-heat-flow or adiabatic)
surface. In practice, insulation is used to reduce heat flow and seldom can be regarded as perfect.
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Figure 1.4 Steady one-dimensional conduction across a plane wall, showing the
application of the energy conservation principle to an elemental volume ∆x thick.

T1 > T2, Q̇ is in the positive x direction.4 The phenomenological law governing this
heat flow is Fourier’s law of heat conduction, which states that in a homogeneous
substance, the local heat flux is proportional to the negative of the local temperature
gradient:

Q̇

A
= q and q ∝ −

dT

dx
(1.7)

where q is the heat flux, or heat flow per unit area perpendicular to the flow direction
[W/m2], T is the local temperature [K or ◦C], and x is the coordinate in the flow
direction [m]. When dT/dx is negative, the minus sign in Eq. (1.7) gives a positive
q in the positive x direction. Introducing a constant of proportionality k,

q =−k
dT

dx
(1.8)

where k is the thermal conductivity of the substance and, by inspection of the equa-
tion, must have units [W/m K]. Notice that temperature can be given in kelvins or
degrees Celsius in Eq. (1.8): the temperature gradient does not depend on which of
these units is used since one kelvin equals one degree Celsius (1 K = 1◦C). Thus,
the units of thermal conductivity could also be written [W/m◦C], but this is not the
recommended practice when using the SI system of units. The magnitude of the
thermal conductivity k for a given substance very much depends on its microscopic
structure and also tends to vary somewhat with temperature; Table 1.1 gives some
selected values of k.

4 Notice that this Q̇ is the heat flow in the x direction, whereas in the first law, Eqs. (1.1)–(1.4), Q̇ = Q̇in − Q̇out is the net
heat transfer into the whole system. In linking thermodynamics to heat transfer, some ambiguity in notation arises when
common practice in both subjects is followed.
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Table 1.1 Selected values of thermal conductivity at 300 K (∼ 25◦C).

k
Material W/m K

Copper 386
Aluminum 204
Brass (70% Cu, 30% Zn) 111
Mild steel 64
Stainless steel, 18–8 15
Mercury 8.4
Concrete 1.4
Pyrex glass 1.09
Water 0.611
Neoprene rubber 0.19
Engine oil, SAE 50 0.145
White pine, perpendicular to grain 0.10
Polyvinyl chloride (PVC) 0.092
Freon 12 0.071
Cork 0.043
Fiberglass (medium density) 0.038
Polystyrene 0.028
Air 0.027

Note: Appendix A contains more comprehensive data.

Figure 1.4 shows an elemental volume ∆V located between x and x +∆x; ∆V
is a closed system, and the energy conservation principle in the form of Eq. (1.2)
applies. If we consider a steady state, then temperatures are unchanging in time and
dT/dt = 0; also, if there is no heat generated within the volume, Q̇v = 0. Then Eq.
(1.2) states that the net heat flow into the system is zero. Because the same amount of
heat is flowing into ∆V across the face at x, and out of ∆V across the face at x+∆x,

Q̇|x = Q̇|x+∆x

Since the rate of heat transfer is constant for all x, we simplify the notation by drop-
ping the |x and |x+∆x subscripts (see the footnote on page 9), and write

Q̇ = Constant

But from Fourier’s law, Eq. (1.8),

Q̇ = qA =−kA
dT

dx

The variables are separable: rearranging and integrating across the wall,

Q̇

A

∫ L

0
dx =−

∫ T2

T1

k dT

where Q̇ and A have been taken outside the integral signs since both are constants. If
the small variation of k with temperature is ignored for the present we obtain
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Q̇ =
kA

L
(T1 −T2) =

T1 −T2

L/kA
(1.9)

Comparison of Eq. (1.9) with Ohm’s law, I = E/R, suggests that ∆T = T1 −T2 can
be viewed as a driving potential for flow of heat, analogous to voltage being the
driving potential for current. Then R ≡ L/kA can be viewed as a thermal resistance
analogous to electrical resistance.

If we have a composite wall of two slabs of material, as shown in Fig. 1.5, the
heat flow through each layer is the same:

Q̇ =
T1 −T2

LA/kAA
=

T2 −T3

LB/kBA

Rearranging

Q̇

(
LA

kAA

)
= T1 −T2

Q̇

(
LB

kBA

)
= T2 −T3

Adding eliminates the interface temperature T2:

Q̇

(
LA

kAA
+

LB

kBA

)
= T1 −T3

or

Q̇ =
T1 −T3

LA/kAA+LB/kBA
=

∆T

RA +RB
(1.10a)

Using the electrical resistance analogy, we would view the problem as two resis-
tances in series forming a thermal circuit, and immediately write

Q̇ =
∆T

RA +RB
(1.10b)

Figure 1.5 The temperature distribution for steady conduction across a
composite plane wall and the corresponding thermal circuit.
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EXAMPLE 1.1 Heat Transfer through Insulation

A refrigerated container is in the form of a cube with 2 m sides and has 5 mm-thick aluminum
walls insulated with a 10 cm layer of cork. During steady operation, the temperatures on the
inner and outer surfaces of the container are measured to be −5◦C and 20◦C, respectively.
Determine the cooling load on the refrigerator.

Solution

Given: Aluminum container insulated with 10 cm—thick cork.

Required: Rate of heat gain.

Assumptions: 1. Steady state.
2. One-dimensional heat conduction (ignore corner effects).

Equation (1.10) applies:

Q̇ =
∆T

RA +RB
where R =

L

kA

Let subscripts A and B denote the aluminum wall
and cork insulation, respectively. Table 1.1 gives kA =
204 W/m K, kB = 0.043 W/m K. We suspect that the
thermal resistance of the aluminum wall is negligible,
but we will calculate it anyway. For one side of area
A = 4m2, the thermal resistances are

RA =
LA

kAA
=

(0.005 m)

(204 W/m K)(4 m2)
= 6.13×10−6 K/W

RB =
LB

kBA
=

(0.10 m)

(0.043 W/m K)(4 m2)
= 0.581 K/W

Since RA is five orders of magnitude less than RB, it can be ignored. The heat flow for a
temperature difference of T1 −T2 = 20− (−5) = 25 K, is

Q̇ =
∆T

RB
=

25 K
0.581 K/W

= 43.0 W

For six sides, the total cooling load on the refrigerator is 6.0×43.0 = 258 W.

Comments

1. In the future, when it is obvious that a resistance in a series network is negligible, it can be
ignored from the outset (no effort should be expended to obtain data for its calculation).

2. The assumption of one-dimensional conduction is good because the 0.1 m insulation
thickness is small compared to the 2 m-long sides of the cube.
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3. Notice that the temperature difference T1 −T2 is expressed in kelvins, even though T1 and
T2 were given in degrees Celsius.

4. We have assumed perfect thermal contact between the aluminum and cork; that is, there is
no thermal resistance associated with the interface between the two materials (see Section
2.2.2).

1.3.2 Thermal Radiation

All matter and space contains electromagnetic radiation. A particle, or quantum, of
electromagnetic energy is a photon, and heat transfer by radiation can be viewed
either in terms of electromagnetic waves or in terms of photons. The flux of radiant
energy incident on a surface is its irradiation, G [W/m2]; the energy flux leaving a
surface due to emission and reflection of electromagnetic radiation is its radiosity,
J [W/m2]. A black surface (or blackbody) is defined as a surface that absorbs all
incident radiation, reflecting none. As a consequence, all of the radiation leaving a
black surface is emitted by the surface and is given by the Stefan-Boltzmann law
as

J = Eb = σT 4 (1.11)

where Eb is the blackbody emissive power, T is absolute temperature [K], and σ
is the Stefan-Boltzmann constant (≃ 5.67× 10−8 W/m2K4). Table 1.2 shows how
Eb = σT 4 increases rapidly with temperature.

Table 1.2 Blackbody emissive power σT 4 at various temperatures.

Surface Temperature Blackbody Emissive Power
K W/m2

300 (room temperature) 459
1000 (cherry-red hot) 56,700
3000 (lamp filament) 4,590,000
5760 (Sun temperature) 62,400,000

Figure 1.6 shows a convex black object of surface area A1 in an evacuated black
isothermal enclosure at temperature T2. At equilibrium, the object is also at temper-
ature T2, and the radiant energy incident on the object must equal the radiant energy
leaving from the object:

G1A1 = J1A1 = σT 4
2 A1

Hence

G1 = σT 4
2 (1.12)

and is uniform over the area. If the temperature of the object is now raised to T1,
its radiosity becomes σT 4

1 while its irradiation remains σT 4
2 (because the enclosure

reflects no radiation). Then the net radiant heat flux through the surface, q1, is the
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Figure 1.6 A convex black object (surface 1) in a black isothermal enclosure (surface 2).

radiosity minus the irradiation:

q1 = J1 −G1 (1.13)

or

q1 = σT4
1 −σT 4

2 (1.14)

where the sign convention is such that a net flux away from the surface is positive.
Equation (1.14) is also valid for two large black surfaces facing each other, as shown
in Fig. 1.7.

The blackbody is an ideal surface. Real surfaces absorb less radiation than do
black surfaces. The fraction of incident radiation absorbed is called the absorptance
(or absorptivity), α . A widely used model of a real surface is the gray surface,
which is defined as a surface for which α is a constant, irrespective of the nature of
the incident radiation. The fraction of incident radiation reflected is the reflectance
(or reflectivity), ρ . If the object is opaque, that is, not transparent to electromagnetic
radiation, then

ρ = 1−α (1.15)

Figure 1.7 Examples of two
large surfaces facing each other.
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Table 1.3 Selected approximate values of emittance, ε (total hemispherical values at
normal temperatures).

Surface Emittance, ε

Aluminum alloy, unoxidized 0.035
Black anodized aluminum 0.80
Chromium plating 0.16
Stainless steel, type 312, lightly oxidized 0.30
Inconel X, oxidized 0.72
Black enamel paint 0.78
White acrylic paint 0.90
Asphalt 0.88
Concrete 0.90
Soil 0.94
Pyrex glass 0.80

Note: More comprehensive data are given in Appendix A. Emittance is very dependent on surface finish; thus,
values obtained from various sources may differ significantly.

Real surfaces also emit less radiation than do black surfaces. The fraction of the
blackbody emissive power σT 4 emitted is called the emittance (or emissivity), ε.5

A gray surface also has a constant value of ε , independent of its temperature, and,
as will be shown in Chapter 6, the emittance and absorptance of a gray surface are
equal:

ε = α (gray surface) (1.16)

Table 1.3 shows some typical values of ε at normal temperatures. Bright metal
surfaces tend to have low values, whereas oxidized or painted surfaces tend to have
high values. Values of α and ρ can also be obtained from Table 1.3 by using Eqs.
(1.15) and (1.16).

If heat is transferred by radiation between two gray surfaces of finite size, as
shown in Fig. 1.8, the rate of heat flow will depend on temperatures T1 and T2 and
emittances ε1 and ε2, as well as the geometry. Clearly, some of the radiation leaving
surface 1 will not be intercepted by surface 2, and vice versa. Determining the rate
of heat flow is usually quite difficult. In general, we may write

Q̇12 = A1F12(σT4
1 −σT 4

2 ) (1.17)

Figure 1.8 Radiation heat transfer
between two finite gray surfaces.

5 Both the endings -ance and -ivity are commonly used for radiation properties. In this text, -ance will be used for surface
radiation properties. In Chapter 6, -ivity will be used for gas radiation properties.
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where Q̇12 is the net radiant energy interchange (heat transfer) from surface 1 to
surface 2, and F12 is a transfer factor, which depends on emittances and geometry.
For the special case of surface 1 surrounded by surface 2, where either area A1 is
small compared to area A2, or surface 2 is nearly black, F12 ≃ ε1 and Eq. (1.17)
becomes

Q̇12 = ε1A1(σT4
1 −σT 4

2 ) (1.18)

Equation (1.18) will be derived in Chapter 6. It is an important result and is often
used for quick engineering estimates.

The T 4 dependence of radiant heat transfer complicates engineering calculations.
When T1 and T2 are not too different, it is convenient to linearize Eq. (1.18) by
factoring the term (σT4

1 −σT 4
2 ) to obtain

Q̇12 = ε1A1σ (T2
1 +T 2

2 )(T1 +T2)(T1 −T2)

≃ ε1A1σ (4T 3
m)(T1 −T2)

for T1 ≃ T2, where Tm is the mean of T1 and T2. This result can be written more
concisely as

Q̇12 ≃ A1hr(T1 −T2) (1.19)

where hr = 4ε1σT 3
m is called the radiation heat transfer coefficient [W/m2 K]. At

25◦C (= 298 K),

hr = (4)ε1(5.67×10−8 W/m2 K4)(298 K)3

or

hr ≃ 6ε1 W/m2 K

This result can be easily remembered: The radiation heat transfer coefficient at room
temperature is about six times the surface emittance. For T1 = 320 K and T2 = 300 K,
the error incurred in using the approximation of Eq. (1.19) is only 0.1%; for T1 = 400
K and T2 = 300 K, the error is 2%.

EXAMPLE 1.2 Heat Loss from a Transistor

An electronic package for an experiment in outer space contains a transistor capsule, which
is approximately spherical in shape with a 2 cm diameter. It is contained in an evacuated
case with nearly black walls at 30◦C. The only significant path for heat loss from the cap-
sule is radiation to the case walls. If the transistor dissipates 300 mW, what will the capsule
temperature be if it is (i) bright aluminum and (ii) black anodized aluminum?

Solution

Given: 2 cm-diameter transistor capsule dissipating 300 mW.

Required: Capsule temperature for (i) bright aluminum and (ii) black anodized aluminum.

Assumptions: Model as a small gray body in large, nearly black surroundings.
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Equation (1.18) is applicable with

Q̇12 = 300 mW

T2 = 30◦C = 303 K

and T1 is the unknown.

Q̇12 = ε1A1(σT 4
1 −σT 4

2 )

0.3 W = (ε1)(π)(0.02m)2[σT 4
1 − (5.67×10−8 W/m2 K4)(303 K)4]

Solving,

σT 4
1 = 478+

239
ε1

(i) For bright aluminum (ε = 0.035 from Table 1.3),

σT 4
1 = 478+6828 = 7306W/m2

T1 = 599K (326◦C)

(ii) For black anodized aluminum (ε = 0.80 from Table 1.3),

σT 4
1 = 478+298 = 776W/m2

T1 = 342K(69◦C)

Comments

1. The anodized aluminum gives a satisfactory operating temperature, but a bright aluminum
capsule could not be used since 326◦C is far in excess of allowable operating temperatures
for semiconductor devices.

2. Note the use of kelvins for temperature in this radiation heat transfer calculation.

1.3.3 Heat Convection

As already explained, convection or convective heat transfer is the term used to de-
scribe heat transfer from a surface to a moving fluid, as shown in Fig. 1.9. The surface
may be the inside of a pipe, the skin of a hypersonic aircraft, or a water-air interface
in a cooling tower. The flow may be forced, as in the case of a liquid pumped through

Figure 1.9 Schematic of
convective heat transfer to
a fluid at temperature Te

flowing at velocity V past a
surface at temperature Ts.
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the pipe or air on the flight vehicle propelled through the atmosphere. On the other
hand, the flow could be natural (or free), driven by buoyancy forces arising from
a density difference, as in the case of a natural-draft cooling tower. Either type of
flow can be internal, such as the pipe flow, or external, such as flow over the vehicle.
Also, both forced and natural flows can be either laminar or turbulent, with laminar
flows being predominant at lower velocities, for smaller sizes, and for more viscous
fluids. Flow in a pipe may become turbulent when the dimensionless group called the
Reynolds number, ReD =VD/ν , exceeds about 2300, where V is the velocity [m/s],
D is the pipe diameter [m], and ν is the kinematic viscosity of the fluid [m2/s]. Heat
transfer rates tend to be much higher in turbulent flows than in laminar flows, owing
to the vigorous mixing of the fluid. Figure 1.10 shows some commonly encountered
flows.

The rate of heat transfer by convection is usually a complicated function of sur-
face geometry and temperature, the fluid temperature and velocity, and fluid thermo-
physical properties. In an external forced flow, the rate of heat transfer is approx-
imately proportional to the difference between the surface temperature Ts and the
temperature of the free stream fluid Te. The constant of proportionality is called the
convective heat transfer coefficient hc:

qs = hc∆T (1.20)

where ∆T = Ts −Te, qs is the heat flux from the surface into the fluid [W/m2], and
hc has units [W/m2 K]. Equation (1.20) is often called Newton’s law of cooling
but is a definition of hc rather than a true physical law. For natural convection, the
situation is more complicated. If the flow is laminar, qs varies as ∆T 5/4; if the flow
is turbulent, it varies as ∆T 4/3. However, we still find it convenient to define a heat
transfer coefficient by Eq. (1.20); then hc varies as ∆T 1/4 for laminar flows and as
∆T 1/3 for turbulent ones.

An important practical problem is convective heat transfer to a fluid flowing
in a tube, as may be found in heat exchangers for heating or cooling liquids, in
condensers, and in various kinds of boilers. In using Eq. (1.20) for internal flows,
∆T = Ts − Tb, where Tb is a properly averaged fluid temperature called the bulk
temperature or mixed mean temperature and is defined in Chapter 4. Here it is
sufficient to note that enthalpy in the steady-flow energy equation, Eq. (1.4), is also
the bulk value, and Tb is the corresponding temperature. If the pipe has a uniform
wall temperature Ts along its length, and the flow is laminar (ReD " 2300), then
sufficiently far from the pipe entrance, the heat transfer coefficient is given by the
exact relation

hc = 3.66
k

D
(1.21)

where k is the fluid thermal conductivity and D is the pipe diameter. Notice that the
heat transfer coefficient is directly proportional to thermal conductivity, inversely
proportional to pipe diameter, and—perhaps surprisingly —independent of flow
velocity. On the other hand, for fully turbulent flow (ReD # 10,000), hc is given
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Figure 1.10 Some commonly encountered flows, (a) Forced flow in a pipe, ReD ≃ 50,000.
The flow is initially laminar because of the “bell-mouth” entrance but becomes turbulent
downstream, (b) Laminar forced flow over a cylinder, ReD ≃ 25. (c) Forced flow through a
tube bank as found in a shell-and-tube heat exchanger, (d) Laminar and turbulent natural
convection boundary layers on vertical walls, (e) Laminar natural convection about a heated
horizontal plate, (f) Cellular natural convection in a horizontal enclosed fluid layer.



20 CHAPTER 1 INTRODUCTION AND ELEMENTARY HEAT TRANSFER

approximately by the following, rather complicated correlation of experimental data:

hc = 0.023
V 0.8k0.6(ρcp)0.4

D0.2ν0.4 (1.22)

In contrast to laminar flow, hc is now strongly dependent on velocity, V , but only
weakly dependent on diameter. In addition to thermal conductivity, other fluid prop-
erties involved are the kinematic viscosity, ν; density, ρ; and constant-pressure spe-
cific heat, cp. In Chapter 4 we will see how Eq. (1.22) can be rearranged in a more
compact form by introducing appropriate dimensionless groups. Equations (1.21)
and (1.22) are only valid at some distance from the pipe entrance and indicate that
the heat transfer coefficient is then independent of position along the pipe. Near the
pipe entrance, heat transfer coefficients tend to be higher, due to the generation of
large-scale vortices by upstream bends or sharp corners and the effect of suddenly
heating the fluid.

Figure 1.11 shows a natural convection flow on a heated vertical surface, as well
as a schematic of the associated variation of hc along the surface. Transition from a
laminar to a turbulent boundary layer is shown. In gases, the location of the transition
is determined by a critical value of a dimensionless group called the Grashof num-
ber. The Grashof number is defined as Grx = (β ∆T )gx3/ν2, where ∆T = Ts−Te, g is
the gravitational acceleration [m/s2], x is the distance from the bottom of the surface
where the boundary layer starts, and β is the volumetric coefficient of expansion,
which for an ideal gas is simply 1/T , where T is absolute temperature [K]. On a
vertical wall, transition occurs at Grx ≃ 109. For air, at normal temperatures, experi-
ments show that the heat transfer coefficient for natural convection on a vertical wall
can be approximated by the following formulas:

Figure 1.11 A natural-convection boundary layer on a vertical wall, showing the variation
of local heat transfer coefficient. For gases, transition from a laminar to turbulent flow
occurs at a Grashof number of approximately 109; hence xtr ≃ [109ν2/β∆T g]1/3.
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Laminar flow: hc = 1.07(∆T/x)1/4 W/m2K 104 < Grx < 109 (1.23a)

Turbulent flow: hc = 1.3(∆T )1/3 W/m2K 109 < Grx < 1012 (1.23b)

Since these are dimensional equations, it is necessary to specify the units of hc, ∆T,
and x, which are [W/m2 K], [K], and [m], respectively. Notice that hc varies as x−1/4

in the laminar region but is independent of x in the turbulent region.
Usually the engineer requires the total heat transfer from a surface and is not too

interested in the actual variation of heat flux along the surface. For this purpose, it is
convenient to define an average heat transfer coefficient hc for an isothermal surface
of area A by the relation

Q̇ = hcA(Ts −Te) (1.24)

so that the total heat transfer rate, Q̇, can be obtained easily. The relation between hc

and hc is obtained as follows: For flow over a surface of width W and length L, as
shown in Fig. 1.12,

dQ̇ = hc(Ts −Te)W dx

Q̇ =
∫ L

0
hc(Ts −Te)W dx

or

Q̇ =

(
1
A

∫ A

0
hc d A

)
A(Ts −Te), where A =WL, dA =W dx (1.25)

if (Ts −Te) is independent of x. Since Te is usually constant, this condition requires
an isothermal wall. Thus, comparing Eqs. (1.24) and (1.25),

hc =
1
A

∫ A

0
hc d A (1.26)

Figure 1.12 An isothermal
surface used to define the
average convective heat
transfer coefficient hc.
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Table 1.4 Orders of magnitude of average convective heat transfer coefficients.

hc

Flow and Fluid W/m2 K

Free convection, air 3–25
Free convection, water 15–1000
Forced convection, air 10–200
Forced convection, water 50–10,000
Forced convection, liquid sodium 10,000–100,000
Condensing steam 5000–50,000
Boiling water 3000–100,000

The surface may not be isothermal; for example, the surface may be electrically
heated to give a uniform flux qs along the surface. In this case, defining an average
heat transfer coefficient is more difficult and will be dealt with in Chapter 4. Table
1.4 gives some order-of-magnitude values of average heat transfer coefficients for
various situations. In general, high heat transfer coefficients are associated with high
fluid thermal conductivities, high flow velocities, and small surfaces. The high heat
transfer coefficients shown for boiling water and condensing steam are due to an-
other cause: as we will see in Chapter 7, a large enthalpy of phase change (latent
heat) is a contributing factor.

The complexity of most situations involving convective heat transfer precludes
exact analysis, and correlations of experimental data must be used in engineering
practice. For a particular situation, a number of correlations from various sources
might be available, for example, from research laboratories in different countries.
Also, as time goes by, older correlations may be superseded by newer correlations
based on more accurate or more extensive experimental data. Heat transfer coeffi-
cients calculated from various available correlations usually do not differ by more
than about 20%, but in more complex situations, much larger discrepancies may
be encountered. Such is the nature of engineering calculations of convective heat
transfer, in contrast to the more exact nature of the analysis of heat conduction or of
elementary mechanics, for example.

EXAMPLE 1.3 Heat Loss through Glass Doors

The living room of a ski chalet has a pair of glass doors 2.3 m high and 4.0 m wide. On a
cold morning, the air in the room is at 10◦C, and frost partially covers the inner surface of the
glass. Estimate the convective heat loss to the doors. Would you expect to see the frost form
initially near the top or the bottom of the doors? Take ν = 14×10−6 m2/s for the air.
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Solution

Given: Glass doors, width W = 4 m, height L = 2.3 m.

Required: Estimate of convective heat loss to the doors.

Assumptions: 1. Inner surface isothermal at Ts ≃ 0◦C.
2. The laminar to turbulent flow transition

occurs at Grx ≃ 109.

Equation (1.24) will be used to estimate the heat loss. The
inner surface will be at approximately 0◦C since it is only
partially covered with frost. If it were warmer, frost couldn’t
form; and if it were much colder, frost would cover the glass
completely. There is a natural convection flow down the door
since Te = 10◦ C is greater than Ts = 0◦ C. Transition from
a laminar boundary layer to a turbulent boundary layer oc-
curs when the Grashof number is about 109. For transition at
x = xtr,

Gr = 109 =
(β∆T )gx3

tr

ν2 ; β = 1/T for an ideal gas

xtr =

[
109 ν2

(∆T/T )g

]1/3

=

[
(109)(14×10−6 m2/s)2

(10/278)(9.81m/s2)

]1/3

= 0.82m

where the average of Ts and Te has been used to evaluate β . The transition is seen to take
place about one third of the way down the door.

We find the average heat transfer coefficient, hc, by substituting Eqs. (1.23 a,b) in Eq.
(1.26):

hc =
1
A

∫ A

0
hc dA; A =WL, dA =W dx

=
1
L

∫ L

0
hc dx

=
1
L

[∫ xtr

0
1.07(∆T/x)1/4 dx+

∫ L

xtr

1.3(∆T )1/3 dx

]

= (1/L)[(1.07)(4/3)∆T 1/4x
3/4
tr +(1.3)(∆T )1/3(L− xtr)]

= (1/2.3)[(1.07)(4/3)(10)1/4(0.82)3/4 +(1.3)(10)1/3(2.3−0.82)]

= (1/2.3)[2.19+4.15]

= 2.75 W/m2K

Then, from Eq. (1.24), the total heat loss to the door is

Q̇ = hcA∆T = (2.75 W/m2 K)(2.3×4.0 m2)(10 K) = 253 W
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Comments

1. The local heat transfer coefficient is larger near the top of the door, so that the relatively
warm room air will tend to cause the glass there to be at a higher temperature than further
down the door. Thus, frost should initially form near the bottom of the door.

2. In addition, interior surfaces in the room will lose heat by radiation through the glass
doors.

1.4 COMBINED MODES OF HEAT TRANSFER

Heat transfer problems encountered by the design engineer almost always involve
more than one mode of heat transfer occurring simultaneously. For example, con-
sider the nighttime heat loss through the roof of the house shown in Fig. 1.3. Heat
is transferred to the ceiling by convection from the warm room air, and by radiation
from the walls, furniture, and occupants. Heat transfer across the ceiling and its
insulation is by conduction, across the attic crawlspace by convection and radiation,
and across the roof tile by conduction. Finally, the heat is transferred by convection
to the cold ambient air, and by radiation to the nighttime sky. To consider realistic
engineering problems, it is necessary at the outset to develop the theory required to
handle combined modes of heat transfer.

1.4.1 Thermal Circuits

The electrical circuit analogy for conduction through a composite wall was intro-
duced in Section 1.3.1. We now extend this concept to include convection and ra-
diation as well. Figure 1.13 shows a two-layer composite wall of cross-sectional
area A with the layers A and B having thickness and conductivity LA, kA and LB, kB,
respectively. Heat is transferred from a hot fluid at temperature Ti to the inside of the
wall with a convective heat transfer coefficient hc,i, and away from the outside of the
wall to a cold fluid at temperature To with heat transfer coefficient hc,o.

Figure 1.13 The temperature distribution for steady heat transfer
across a composite plane wall, and the corresponding thermal circuit.
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Newton’s law of cooling, Eq. (1.20), can be rewritten as

Q̇ =
∆T

1/hcA
(1.27)

with 1/hcA identified as a convective thermal resistance. At steady state, the heat
flow through the wall is constant. Referring to Fig. 1.13 for the intermediate temper-
atures,

Q̇ =
Ti −T1

1/hc,iA
=

T1 −T2

LA/kAA
=

T2 −T3

LB/kBA
=

T3 −To

1/hc,oA
(1.28)

Equation (1.28) is the basis of the thermal circuit shown in Fig. 1.13. The total resis-
tance is the sum of four resistances in series. If we define the overall heat transfer
coefficient U by the relation

Q̇ =UA(Ti −To) (1.29)

then 1/UA is an overall resistance given by

1
UA

=
1

hc,iA
+

LA

kAA
+

LB

kBA
+

1
hc,oA

(1.30a)

or, since the cross-sectional area A is constant for a plane wall,

1
U

=
1

hc,i
+

LA

kA
+

LB

kB
+

1
hc,o

(1.30b)

Equation (1.29) is simple and convenient for use in engineering calculations. Typ-
ical values of U [W/m2 K] vary over a wide range for different types of walls and
convective flows.

Figure 1.14 shows a wall whose outer surface loses heat by both convection and
radiation. For simplicity, assume that the fluid is at the same temperature as the
surrounding surfaces, To. Using the approximate linearized Eq. (1.19),

Figure 1.14 A wall that loses heat by both conduction and radiation; the
thermal circuit shows resistances in parallel.
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Q̇rad =
∆T

1/hrA
(1.31)

with 1/hrA identified as a radiative thermal resistance. We now have two resistances
in parallel, as shown in Fig. 1.14. The sum of the resistances is

∑R =
L

kA
+

1
hcA+hrA

so

1
UA

=
L

kA
+

1
(hc +hr)A

(1.32)

so that the convective and radiative heat transfer coefficients can simply be added.
However, often the fluid and surrounding temperatures are not the same, or the
simple linearized representation of radiative transfer [Eq. (1.19)] is invalid, so the
thermal circuit is then more complex. When appropriate, we will write h = hc + hr

to account for combined convection and radiation.6

EXAMPLE 1.4 Heat Loss through a Composite Wall

The walls of a sparsely furnished single-room cabin in a forest consist of two layers of pine
wood, each 2 cm thick, sandwiching 5 cm of fiberglass insulation. The cabin interior is main-
tained at 20◦C when the ambient air temperature is 2◦C. If the interior and exterior convective
heat transfer coefficients are 3 and 6 W/m2 K, respectively, and the exterior surface is finished
with a white acrylic paint, estimate the heat flux through the wall.

Solution

Given: Pine wood cabin wall insulated with 5 cm of fiberglass.

Required: Estimate of heat loss through wall.

Assumptions: 1. Forest trees and shrubs are at the ambient air temperature, Te = 2◦C.
2. Radiation transfer inside cabin is negligible since inner surfaces of walls,

roof, and floor are at approximately the same temperature.

From Eq. (1.29), the heat flux through the wall is

q =
Q̇

A
=U(Ti −To)

From Eqs. (1.30) and (1.32), the overall heat transfer coefficient is given by

1
U

=
1

hc,i
+

LA

kA
+

LB

kB
+

LC

kC
+

1
(hc,o +hr,o)

6 Notice that the notation used for this combined heat transfer coefficient, h, is the same as that used for enthalpy. The
student must be careful not to confuse these two quantities. Other notation is also in common use, for example. α for the
heat transfer coefficient and i for enthalpy.
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The thermal conductivities of pine wood, perpendic-
ular to the grain, and of fiberglass are given in Table
1.1 as 0.10 and 0.038 W/m K, respectively. The exterior
radiation heat transfer coefficient is given by Eq. (1.19)
as

hr,o = 4εσT 3
m

where ε = 0.9 for white acrylic paint, from Table 1.3,
and Tm ≃ 2◦C = 275 K (since we expect the exterior
resistance to be small). Thus,

hro = 4(0.9)(5.67×10−8 W/m2 K4)(275K)3

= 4.2 W/m2 K

1
U

=
1
3
+

0.02
0.10

+
0.05
0.038

+
0.02
0.10

+
1

6+4.2

= 0.333+0.200+1.316+0.200+0.098

= 2.15 (W/m2 K)−1

U = 0.466 W/m2 K

Then the heat flux q =U(Ti −To) = 0.466(20−2) = 8.38 W/m2.
The thermal circuit is shown below.

Comments

1. The outside resistance is seen to be 0.098/2.15 ≃ 5% of the total resistance; hence, the
outside wall of the cabin is only about 1 K above the ambient air, and our assumption of
Tm = 275 K for the evaluation of hr,o is adequate.

2. The dominant resistance is that of the fiberglass insulation; therefore, an accurate cal-
culation of q depends mainly on having accurate values for the fiberglass thickness and
thermal conductivity. Poor data or poor assumptions for the other resistances have little
impact on the result.

1.4.2 Surface Energy Balances

Section 1.4.1 assumed that the energy flow Q̇ across the wall surfaces is continuous.
In fact, we used a procedure commonly called a surface energy balance, which is
used in various ways. Some examples follow. Figure 1.15 shows an opaque solid
that is losing heat by convection and radiation to its surroundings. Two imaginary
surfaces are located on each side of the real solid-fluid interface: an s-surface in
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Figure 1.15 Schematic of a surface
energy balance, showing the m- and
s-surface in the solid and fluid,
respectively.

the fluid just adjacent to the interface, and an m-surface in the solid located such
that all radiation is emitted or absorbed between the m-surface and the interface.
Thus, energy is transferred across the m-surface by conduction only. (The choice of
s and m to designate these surfaces follows an established practice. In particular, the
use of the s prefix is consistent with the use of the subscript s to denote a surface
temperature Ts, in convection analysis.) The first law as applied to the closed system
located between m- and s-surfaces requires that ∑ Q̇ = 0; thus,

Q̇cond − Q̇conv − Q̇rad = 0 (1.33)

or, for a unit area,

qcond −qconv −qrad = 0 (1.34)

where the sign convention for the fluxes is shown in Fig. 1.15. If the solid is isother-
mal, Eq. (1.33) reduces to

Q̇conv + Q̇rad = 0 (1.35)

which is a simple energy balance on the solid. Notice that these surface energy bal-
ances remain valid for unsteady conditions, in which temperatures change with time,
provided the mass contained between the s- and m-surfaces is negligible and cannot
store energy.

EXAMPLE 1.5 Air Temperature Measurement

A machine operator in a workshop complains that the air-heating system is not keeping the air
at the required minimum temperature of 20◦C. To support his claim, he shows that a mercury-
in-glass thermometer suspended from a roof truss reads only 17◦C. The roof and walls of the
workshop are made of corrugated iron and are not insulated; when the thermometer is held
against the wall, it reads only 5◦C. If the average convective heat transfer coefficient for the
suspended thermometer is estimated to be 10 W/m2 K, what is the true air temperature?

Solution

Given: Thermometer reading a temperature of 17◦C.

Required: True air temperature.

Assumptions: Thermometer can be modeled as a small gray body in large, nearly black
surroundings at 5◦C.
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Let Tt be the thermometer reading, Te the air tem-
perature, and Tw the wall temperature. Equation
(1.35) applies,

Q̇conv + Q̇rad = 0

since at steady state there is no conduction within
the thermometer. Substituting from Eqs. (1.24) and
(1.18),

hcA(Tt −Te)+ εσA(T 4
t −T 4

w ) = 0

From Table 1.3, ε = 0.8 for pyrex glass. Canceling A,

10(290−Te)+(0.8)(5.67)(2.904 −2.784) = 0

Solving,

Te = 295 K ≃ 22◦C

Comments

1. Since Te > 20◦C, the air-heating system appears to be working satisfactorily.

2. Our model assumes that the thermometer is completely surrounded by a surface at 5˚C: ac-
tually, the thermometer also receives radiation from machines, workers, and other sources
at temperatures higher than 5˚C, so that our calculated value of Te = 22◦C is somewhat
high.

1.5 TRANSIENT THERMAL RESPONSE

The heat transfer problems described in Examples 1.1 through 1.5 were steady-
state problems; that is, temperatures were not changing in time. In Example 1.2,
the transistor temperature was steady with the resistance (I2R) heating balanced
by the radiation heat loss. Unsteady-state or transient problems occur when tem-
peratures change with time. Such problems are often encountered in engineering
practice, and the engineer may be required to predict the temperature-time response
of a system involved in a heat transfer process. If the system, or a component of the
system, can be assumed to have a spatially uniform temperature, analysis involves
a relatively simple application of the energy conservation principle, as will now be
demonstrated.

1.5.1 The Lumped Thermal Capacity Model

If a system undergoing a transient thermal response to a heat transfer process has a
nearly uniform temperature, we may ignore small differences of temperature within
the system. Changes in internal energy of the system can then be specified in terms
of changes of the assumed uniform (or average) temperature of the system. This
approximation is called the lumped thermal capacity model.7 The system might

7 The term capacitance is also used, in analogy to an equivalent electrical circuit.
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be a small solid component of high thermal conductivity that loses heat slowly to its
surroundings via a large external thermal resistance. Since the thermal resistance to
conduction in the solid is small compared to the external resistance, the assumption
of a uniform temperature is justified. Alternatively, the system might be a well-stirred
liquid in an insulated tank losing heat to its surroundings, in which case it is the
mixing of the liquid by the stirrer that ensures a nearly uniform temperature. In either
case, once we have assumed uniformity of temperature, we have no further need for
details of the heat transfer within the system—that is, of the conduction in the solid
component or the convection in the stirred liquid. Instead, the heat transfer process
of concern is the interaction of the system with the surroundings, which might be by
conduction, radiation, or convection.

Governing Equation and Initial Condition

For purposes of analysis, consider a metal forging removed from a furnace at tem-
perature T0 and suddenly immersed in an oil bath at temperature Te, as shown in Fig.
1.16. The forging is a closed system, so the energy conservation principle in the form
of Eq. (1.2) applies. Heat is transferred out of the system by convection. Using Eq.
(1.24) the rate of heat transfer is hcA(T −Te), where hc is the heat transfer coefficient
averaged over the forging surface area A, and T is the forging temperature. There is
no heat generated within the forging, so that Q̇v = 0. Substituting in Eq. (1.2):

ρV c
dT

dt
=−hcA(T −Te)

dT

dt
=−

hcA

ρVc
(T −Te) (1.36)

which is a first-order ordinary differential equation for the forging temperature, T ,
as a function of time, t. One initial condition is required:

t = 0 : T = T0 (1.37)

Figure 1.16 A forging immersed
in an oil bath for quenching.
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Solution for the Temperature Response

A simple analytical solution can be obtained provided we assume that the bath is
large, so Te is independent of time, and that hcA/ρV c is approximated by a constant
value independent of temperature. The variables in Eq. (1.36) can then be separated:

dT

T −Te
=−

hcA

ρVc
dt

Writing dT = d(T −Te), since Te is constant, and integrating with T = T0 at t = 0,

∫ T

T0

d(T −Te)

T −Te
=−

hcA

ρV c

∫ t

0
dt

ln
T −Te

T0 −Te
=−

hcA

ρVc
t

T −Te

T0 −Te
= e−(hcA/ρV c)t = e−t/tc (1.38)

where tc = ρVc/hcA [s] is called the time constant of the process. When t = tc,
the temperature difference (T −Te) has dropped to be 36.8% of the initial difference
(T0−Te). Our result, Eq. (1.38), is a relation between two dimensionless parameters:
a dimensionless temperature, T ∗ = (T −Te)/(T0−Te), which varies from 1 to 0; and
a dimensionless time, t∗ = t/tc = hcAt/ρVc, which varies from 0 to ∞. Equation
(1.38) can be written simply as

T ∗ = e−t∗ (1.39)

and a graph of T ∗ versus t∗ is a single curve, as illustrated in Fig. 1.17.

Figure 1.17 Lumped thermal capacity capacity
temperature response in terms of dimensionless
variables T ∗and t∗.
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Methods introduced in Chapter 2 can be used to deduce directly from Eqs. (1.36)
and (1.37) that T ∗ must be a function of t∗ alone [i.e., T ∗ = f (t∗)] without solving
the equation. Of course, the solution also gives us the form of the function. Thus, the
various parameters, hc, c, ρ , and so on, only affect the temperature response in the
combination t∗, and not independently. If both hc and c are doubled, the temperature
at time t is unchanged. This dimensionless parameter t∗ is a dimensionless group in
the same sense as the Reynolds number, but it does not have a commonly used name.

Validity of the Model

We would expect our assumption of negligible temperature gradients within the sys-
tem to be valid when the internal resistance to heat transfer is small compared with
the external resistance. If L is some appropriate characteristic length of a solid body,
for example, V/A (which for a plate is half its thickness), then

Internal conduction resistance
External convection resistance

≃
L/ksA

1/hcA
=

hcL

ks
≃

hcV

ksA
(1.40)

where ks is the thermal conductivity of the solid material. The quantity hcL/ks [W/m2

K][m]/[W/m K] is a dimensionless group called a Biot number, Bi.8 More exact
analyses of transient thermal response of solids indicate that, for bodies resembling a
plate, cylinder, or sphere, BiLTC = hcV/ksA< 0.1 ensures that the temperature given
by the lumped thermal capacity (LTC) model will not differ from the exact volume
averaged value by more than 5%, and that our assumption of uniform temperature is
adequate. Nonetheless, the choice of both the length scale L and the threshold (e.g.,
BiLTC < 0.1) used to determine the validity of the lumped thermal capacity model
should be done carefully if accurate calculations are critical (see Chapter 3). If the
heat transfer is by radiation, the convective heat transfer coefficient in Eq. (1.40) can
be replaced by the approximate radiation heat transfer coefficient hr defined in Eq.
(1.19).

In the case of the well-stirred liquid in an insulated tank, it will be necessary to
evaluate the ratio

Internal convection resistance
External resistance

≃
1/hc,iA

1/UA
=

U

hc,i
(1.41)

where U is the overall heat transfer coefficient, for heat transfer from the inner sur-
face of the tank, across the tank wall and insulation, and into the surroundings. If
this ratio is small relative to unity, the assumption of a uniform temperature in the
liquid is justified.

The approximation or model used in the preceding analysis is called a lumped
thermal capacity approximation since the thermal capacity is associated with a
single temperature. There is an electrical analogy to the lumped thermal capac-
ity model, owing to the mathematical equivalence of Eq. (1.36) to the equation
governing the voltage in the simple resistance-capacitance electrical circuit shown

8 To avoid confusion with the Biot number used in Chapter 3, we will denote the Biot number based on L = V/A as
BiLTC for use with the lumped thermal capacity model.
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Figure 1.18 Equivalent electrical and thermal circuits for the
lumped thermal capacity model of temperature response.

in Fig. 1.18,

dE

dt
=−

E

RC
(1.42)

with the initial condition E = E0 at t = 0 if the capacitor is initially charged to a
voltage E0. The solution is identical in form to Eq. (1.38),

E

E0
= e−t/RC

and the time constant is RC, the product of the resistance and capacitance [or
C/(1/R), the ratio of capacitance to conductance, to be exactly analogous to Eq.
(1.38)].

EXAMPLE 1.6 Quenching of a Steel Plate

A steel plate 1 cm thick is taken from a furnace at 600˚C and quenched in a bath of oil at
30˚C. If the heat transfer coefficient is estimated to be 400 W/m2 K, how long will it take for
the plate to cool to 100˚C? Take k, ρ , and c for the steel as 50 W/m K, 7800 kg/m3 and 450
J/kg K, respectively.

Solution

Given: Steel plate quenched in an oil bath.

Required: Time to cool from 600˚C to 100˚C.

Assumptions: Lumped thermal capacity model valid.

First the Biot number will be checked to see if the lumped thermal capacity approximation is
valid. For a plate of width W , height H, and thickness L,

V

A
≃

WHL

2W H
=

L

2

where the surface area of the edges has been neglected.
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BiLTC =
hc(L/2)

ks

=
(400W/m2 K)(0.005m)

50W/m K

= 0.04 < 0.1

so the lumped thermal capacity model is applicable. The
time constant tc is

tc =
ρVc

hcA
=

ρ(L/2)c

hc

=
(7800kg/m3)(0.005m)(450J/kg K)

(400W/m2 K)
= 43.9s

Substituting Te = 30◦C, T0 = 600◦C, T = 100◦C in Eq. (1.38) gives

100−30
600−30

= e−t/43.9

Solving,

t = 92 s

Comments

The use of a constant value of hc may be inappropriate for heat transfer by natural con-
vection or radiation.

1.5.2 Combined Convection and Radiation

The analysis of Section 1.5.1 assumes that the heat transfer coefficient was constant
during the cooling period. This assumption is adequate for forced convection but is
less appropriate for natural convection, and when thermal radiation is significant.
Equation (1.23) shows that the natural convection heat transfer coefficient hc is
proportional to ∆T 1/4 for laminar flow and to ∆T 1/3 for turbulent flow. The temper-
ature difference ∆T = T − Te decreases as the body cools, as does hc. Radiation
heat transfer is proportional to (T 4 − T 4

e ) and hence cannot be represented exactly
by Newton’s law of cooling. We now extend our lumped thermal capacity analysis to
allow both for a variable convective heat transfer coefficient and for situations where
both convection and radiation are important.

Governing Equation and Initial Condition

Figure 1.19 shows a body that loses heat by both convection and radiation. For
a small gray body in large, nearly black surroundings also at temperature Te, the
radiation heat transfer is obtained from Eq. (1.18) as Q̇ = εAσ (T 4 − T 4

e ). As in
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Figure 1.19 Schematic of a body
losing heat by convection and
radiation for a lumped thermal
capacity model

Section 1.5.1, the energy conservation principle, Eq. (1.2), becomes

ρV c
dT

dt
= −hcA(T − Te) − εAσ (T 4 − T 4

e )

or
dT

dt
= −

hcA

ρVc
(T − Te) −

εAσ

ρVc
(T 4 − T 4

e ) (1.43)

The initial condition is again

t = 0 : T = T0 (1.44)

This first-order ordinary differential equation has no convenient analytical solution
even when the convective heat transfer coefficient hc is constant as in forced con-
vection. However, Eq. (1.43) can be solved easily using a numerical integration
procedure. For this purpose, it can be rearranged as

dT

dt
+

hA

ρVc
(T − Te) = 0 (1.45)

h = hc +hr = B(T − Te)
n + σε(T 2 + T 2

e )(T + Te) (1.46)

where (T 4 − T 4
e ) has been factored, as was done in deriving Eq. (1.19). For forced

convection, n = 0, B = hc; for laminar natural convection n = 1/4 and B is a con-
stant [for example, for a plate of height L, Eq. (1.23a) gives B = (4/3)(1.07)/L1/4].
Equation (1.46) defines a total heat transfer coefficient that accounts for both convec-
tion and radiation and changes continuously as the body cools. To put Eq. (1.45) in
dimensionless form, we use the dimensionless variables introduced in Section 1.5.1:

T ∗ =
T − Te

T0 − Te
, t∗ =

t

tc
(1.47a,b)

The definition of the time constant tc poses a problem since h is not a constant as
before. We choose to define tc in terms of the value of h at time t = 0, when the
body temperature is T0,

tc =
ρVc

h0A
=

ρVc

[B(T0 − Te)n + σε(T 2
0 + T 2

e )(T0 + Te)]A
(1.48)
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Equation (1.45) then becomes

dT ∗

dt∗
+

h(T ∗)

h0
T ∗ = 0 (1.49)

with the initial condition

t∗ = 0 : T ∗ = 1 (1.50)

Computer Program LUMP

Numerical integration is appropriate for this problem. The computer program
LUMP has been prepared accordingly. LUMP solves Eq. (1.49), that is, it obtains the
temperature response of a body that loses heat by convection and/or radiation, based
on the lumped thermal capacity model. The required input constant B is defined in
Eq. (1.46). Any consistent system of units can be used. The output can be obtained
either as graph or as numerical data.

EXAMPLE 1.7 Quenching of an Alloy Sphere

A materials processing experiment under microgravity conditions on the space station re-
quires quenching in a forced flow of an inert gas. A 1 cm–diameter metal alloy sphere is
removed from a furnace at 800˚C and is to be cooled to 500˚C by a flow of nitrogen gas
at 25˚C. Determine the effect of the convective heat transfer coefficient on cooling time for
10 < hc < 100 W/m2 K. Properties of the alloy include: ρ = 14,000 kg/m3; c =140 J/kg K;
ε = 0.1. The surrounds can be taken as nearly black at 25˚C.

Solution

Given: A metal alloy sphere to be quenched.

Required: Effect of convective heat transfer coefficient on cooling time.

Assumptions: 1. Lumped thermal capacity model valid.
2. Constant convective heat transfer coefficient.

The computer code LUMP can be used to solve this problem.
The required inputs are:

T0 and Te = 1073, 298

B = hc = 10

n = 0

σ = 5.67×10−8

ε = 0.1

Final value of t∗: try t∗ = 1

The required dimensionless temperature is

T ∗ =
T − Te

T0 − Te
=

773 − 298
1073 − 298

= 0.613
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and the code is used to obtain the corresponding dimensionless time t∗. For a sphere V/A =
(πD3/6)(πD2) = D/6, so that the time constant is

tc =
ρ V c

h0A
=

ρ(D/6)c
h0

=
(14,000)(0.01/6)(140)

hc +(5.67×10−8)(0.1)(10732 +2982)(1073+298)

=
3267

hc +9.64
s

The actual time is t = t∗ tc. Results obtained using LUMP are tabulated below.

hc t∗ tc t

W/m2 K s s

10 0.59 166 98
20 0.54 110 61
30 0.53 82 43
50 0.52 55 29

100 0.51 30 15

Comments

1. Only two significant figures have been given since high accuracy is not warranted for the
problem.

2. The heat transfer coefficient does not have a strong effect on t∗. Why?

3. For the lumped thermal capacity model to be valid, the Biot number, BiLTC, should be
less than 0.1. The worst case is with hc = 100 W/m2 K at time t = 0, giving h0 = 109.6
W/m2 K and 0.1 > (109.6)(0.01/6)/ks , that is, ks > 1.8 W/m K, which certainly will be
true for a metal alloy.

1.6 HEAT EXCHANGERS

In Section 1.5, we considered problems in which the temperature of a system
changed with time as a result of heat transfer between the system and its surround-
ings. We now consider problems in which the temperature of a fluid changes as
it flows through a passage as a result of heat transfer between the passage walls
and the fluid. These problems are encountered in the analysis of heat exchanger
performance. A heat exchanger is a device that facilitates transfer of heat from one
fluid stream to another. Power production, refrigeration, heating and air condition-
ing, food processing, chemical processing, oil refining, and the operation of almost
all vehicles depends on heat exchangers of various types. The analysis and design
of heat exchangers is the subject of Chapter 8. The analysis of a very simple heat
exchanger configuration is presented here to introduce some of the basic concepts
underlying heat exchanger analysis and associated terminology. These concepts will
prove useful in the development and application of heat transfer theory in chapters
preceding Chapter 8—particularly in Chapters 4 and 5, which deal with convection.
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1.6.1 Single- and Two-Stream Exchangers

One important classification of heat exchangers is into single-stream exchangers
and two-stream exchangers. A single-stream exchanger is one in which the tem-
perature of only one stream changes in the exchanger; examples include many types
of evaporators and condensers found in power plants and refrigeration systems. A
power plant condenser is shown in Fig. 1.20. A two-stream exchanger is one in
which the temperatures of both streams change in the exchanger; examples include
radiators and intercoolers for automobile engines, and oil coolers for aircraft engines.
Figure 1.21 shows an oil cooler, which has a counterflow configuration; that is, the
streams flow in opposite directions in the exchanger.

In the analysis of heat exchangers, a useful first step is to draw a sketch of the
expected fluid temperature variations along the exchanger. Figure 1.22a is such a
sketch for the power plant condenser. The hot stream is steam returning from the
turbines, which condenses at a constant temperature TH . This is the saturation tem-
perature corresponding to the pressure maintained in the condenser shell. The cold
stream is cold water from a river, ocean, or cooling tower, and its temperature TC

Figure 1.20 A power plant condenser. (Courtesy Senior Engineering Co.
[formerly Southwestern Engineering], Los Angeles,California.)
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Figure 1.21 A small single-pass
shell-and-tube two-stream heat exchanger,
typically used for cooling oil or water.
(Photograph courtesy of the Young
Radiator Company, Racine, Wis.)

increases as it flows through the exchanger. Figure 1.22b shows the sketch for the oil
cooler. The hot stream is oil from the engine, and the cold stream is coolant water.
Notice that in this counterflow configuration, the cold stream can leave the exchanger
at a higher temperature than the leaving hot stream!

A point that might confuse the beginning student is that there are actually two
streams in many single-stream exchangers. The definition simply requires that the
temperature of only one stream changes in a single-stream exchanger. It is this fea-
ture that makes the analysis of single-stream exchangers particularly simple, as will
now be demonstrated. In Section 1.5, the system analysis was based on the

Figure 1.22 Temperature variations along heat exchangers.
(a) A power plant condenser. (b) A counterflow oil cooler.
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energy conservation principle in the form of the first law of thermodynamics applied
to a closed system. In contrast, the system analysis that follows is based on the first
law applied to an open system.

1.6.2 Analysis of a Condenser

Figure 1.23a shows a simple single-tube condenser. Pure saturated vapor enters the
shell at the top and condenses on a single horizontal tube. The condensate forms a
thin film on the outside of the tube, drops off the bottom, and leaves the shell through
a drain. The vapor condenses at the saturation temperature corresponding to the pres-
sure in the shell. Hence, the condensate film surface temperature is Tsat(P). Figure
1.23b shows the temperature variation across the tube wall and the corresponding
thermal circuit. The enthalpy of condensation is transferred by conduction across
the thin condensate film, by conduction across the tube wall; and by convection into
the coolant. As a result, the coolant temperature rises as it gains energy flowing along
the tube. The vapor flow rate is denoted ṁH [kg/s] and the coolant flow rate ṁC (the
hot and cold streams, respectively).

Figure 1.23 (a) Schematic of a single-tube condenser. (b) The temperature variation across
the tube wall and the thermal circuit for heat transfer across the tube wall.
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The Exchanger Energy Balance

An energy balance on the exchanger as a whole is formulated by writing down
the steady-flow energy equation for a control volume enclosing the exchanger (the
dashed line in Fig. 1.23a). If the exchanger is well insulated, there is no heat loss to
the surroundings, and Eq. (1.4) requires that the enthalpy inflow equal the enthalpy
outflow:

ṁHhH,in + ṁChC,in = ṁHhH,out + ṁChC,out

where h is specific enthalpy [J/kg] and subscripts “in” and “out” denote inlet and
outlet values, respectively. Rearranging gives

ṁC(hC,out −hC,in) = ṁH(hH,in −hH,out) (1.51)

If we assume a constant specific heat for the coolant and that the condensate leaves
at the saturation temperature, Eq. (1.51) becomes

ṁC cpC(TC,out −TC,in) = ṁH hfg (1.52)

where hfg is the enthalpy of vaporization for the vapor. When the coolant flow rate
ṁC and inlet temperature TC,in are known, Eq. (1.52) relates the coolant outlet tem-
perature TC,out to the amount of vapor condensed ṁH .

Governing Equation and Boundary Condition

To determine the variation of coolant temperature along the exchanger, we make
an energy balance on a differential element of the exchanger ∆x long and so derive
a differential equation with x as the independent variable and TC as the dependent
variable. When the steady-flow energy equation, Eq. (1.4), is applied to the control
volume of length ∆x, shown in Fig. 1.24 as a dotted line, the contribution to Q̇ due
to x-direction conduction in the coolant is small and can be neglected. Thus, the

Figure 1.24 An elemental control
volume ∆x long for application of the
steady-flow energy equation to a
condenser coolant stream.
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coolant flow rate times its enthalpy increase must equal the heat transfer across the
tube wall:

ṁCcpC(TC|x+∆x −TC|x) =UP∆x(Tsat −TC)

where U [W/m2 K] is the overall heat transfer coefficient for heat transfer from the
vapor to the coolant, and P[m] is the perimeter of the tube wall. Thus, P∆x is the
surface area of the tube element with length ∆x. For a circular tube P = πD where
D is the pipe diameter. Dividing by ∆x,

ṁCcpC

(
TC|x+∆x −TC|x

∆x

)
=UP(Tsat −TC)

and letting ∆x → 0, gives

ṁCcpC
dTC

dx
=UP(Tsat −TC)

Rearranging,

dTC

dx
−

UP
ṁCcpC

(Tsat −TC) = 0 (1.53)

Equation (1.53) is a first-order ordinary differential equation for TC(x); it requires
one boundary condition, which is

x = 0; TC = TC,in (1.54)

Temperature Variation

To integrate Eq. (1.53), let θ = Tsat −TC; then dTC/dx =−dθ/dx, and the equa-
tion becomes

dθ

dx
+

UP
ṁCcpC

θ = 0

If U is assumed constant along the exchanger, the solution is

θ = Ae−(UP/ṁCcpC)x

where A is the integration constant. Substituting for θ and using the boundary con-
dition, Eq. (1.54) gives the integration constant:

Tsat −TC,in = Ae0 = A

Thus, the solution of Eq. (1.53) is

Tsat −TC = (Tsat −TC,in)e
−(UP/ṁCcpC)x (1.55)

which is the desired relation TC(x), showing an exponential variation along the
exchanger. Of particular interest is the coolant outlet temperature TC,out which is
obtained by letting x = L, the length of the exchanger, in Eq. (1.55):

Tsat −TC,out = (Tsat −TC,in)e
−(UPL/ṁCcpC) (1.56)
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Exchanger Performance Parameters

The product of perimeter and length PL is the area of the heat transfer surface.
The exponent in Eq. (1.56) is, of course, dimensionless,

[
UPL

ṁCcpC

]
=

[W/m2 K][m][m]

[kg/s][J/kg K]
=

[
W s

J

]
= 1

since a watt is a joule per second. This dimensionless group is called the number
of transfer units, with abbreviation NTU and symbol Ntu.9 For a given ṁCcpC, the
larger U , P , or L, the greater the NTU of the exchanger. Thus, the NTU can be
viewed as a measure of the heat transfer “size” of the exchanger. Equation (1.56)
can then be rearranged as

Tsat −TC,out

Tsat −TC,in
= e−Ntu (1.57)

Thus, if Tsat, TC,in, and the NTU of the exchanger are known, TC,out can be calculated.
But we find it convenient to rearrange Eq. (1.57) by subtracting each side from unity
to obtain

1−
Tsat −TC,out

Tsat −TC,in
= 1− e−Ntu

or

TC,out −TC,in

Tsat −TC,in
= 1− e−Ntu (1.58)

Now, even if the exchanger were infinitely long, the maximum outlet temperature
of the coolant would be Tsat (see Fig. 1.22a). Thus, the left-hand side of Eq. (1.58)
is the ratio of the actual temperature rise of the coolant (TC,out − TC,in) divided by
the maximum possible rise for an infinitely long exchanger (Tsat −TC,in) and can be
viewed as the effectiveness of the exchanger, for which we use the symbols ε . Our
result is therefore

ε = 1− e−Ntu (1.59)

Equation (1.59) indicates that the larger the number of transfer units of the ex-
changer, the higher its effectiveness. Although a high effectiveness is desirable, as
the length of an exchanger increases, so does the cost of materials for its construction
and the pumping power required by the coolant flow. Thus, the goal of the design
engineer is to maximize the effectiveness subject to the constraints of construction
(capital) costs and power (operating) costs. In practice, values of ε between 0.6 and
0.9 are typical.

9 NTU is also widely used as the symbol for number of transfer units.
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EXAMPLE 1.8 Performance of a Steam Condenser

A steam condenser is 4 m long and contains 2000, 5/8 inch nominal-size, 18 gage brass tubes
(1.59 cm O.D., 1.25 mm wall thickness). In a test 120 kg/s of coolant water at 300 K is
supplied to the condenser, and when the steam pressure in the shell is 10,450 Pa, condensate
is produced at a rate of 3.02 kg/s. Determine the effectiveness of the exchanger and the overall
heat transfer coefficient. Take the specific heat of the water to be 4174 J/kg K.

Solution

Given: A shell-and-tube steam condenser.

Required: The effectiveness, ε , and overall heat transfer coefficient, U .

Assumptions: U is constant along the exchanger so that Eq. (1.59) applies.

The hot-stream temperature TH is the saturation
temperature corresponding to the given steam pres-
sure of 10,540 Pa; from steam tables (see Table
A.12a in Appendix A of this text) Tsat = 320.0 K.
We first find the coolant water outlet temperature
from the exchanger energy balance Eq. (1.52):

ṁCcpC(TC,out−TC,in) = ṁH hfg

From steam tables, the enthalpy of vaporization at
Tsat = 320K is hfg = 2.389×106 J/kg.

(120kg/s)(4174J/kg K)(TC,out−300K) = (3.02kg/s)(2.389×106 J/kg)

Solving gives TC,out = 314.4K.
The effectiveness, ε , is then obtained from Eq. (1.58) as

ε =
TC,out−TC,in

Tsat −TC,in
=

314.4−300
320−300

= 0.720

and the number of transfer units, from Eq. (1.59), is

Ntu = ln
1

1− ε
= ln

1
1−0.720

= 1.27 =
UPL

ṁCcpC

Solving for the UPL product,

UPL = 1.27ṁCcpC = (1.27)(120kg/s)(4174J/kg K) = 6.36×105 W/K

If we choose to base the overall heat transfer coefficient on the outside area of the tubes,
then, for N tubes, the heat transfer area PL is

PL = NπDL = (2000)(π)(1.59×10−2 m)(4m) = 400m2

Hence, U =UPL/PL = 6.36×105/400 = 1590W/m2 K
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Comments
We could have performed these calculations by considering a single tube of the tube bun-

dle, for which the coolant flow is (120/2000) kg/s and the heat transfer area is simply πDL.
But common practice is always to consider the exchanger as a whole, as we have done here.

1.6.3 Other Single-Stream Exchangers

Simple evaporators and boilers are also single-stream exchangers, where the cold
stream is an evaporating or boiling liquid and the hot stream supplies the enthalpy
of vaporization. Such exchangers will be analyzed in Chapter 8. Heat transfer to a
fluid stream may also be a concern in problems that do not involve heat exchangers.
The exhaust gas stack cooled by a crosswind, shown in Fig. 1.25, can also be viewed
as a single-stream heat exchanger, since only the exhaust gas temperature changes
with location up the stack. Thus, the analysis of Section 1.6.2, properly interpreted,
applies (see Exercise 1–52). Single-stream heat exchanger theory also will be used
in Chapters 4 and 5 in the examination of convective heat transfer in internal flows.

Figure 1.25 An exhaust gas
stack cooled by a crosswind.

1.7 DIMENSIONS AND UNITS

Dimensions are physical properties that are measurable — for example, length, time,
mass, and temperature. A system of units is used to give numerical values to dimen-
sions. The system most widely used throughout the world in science and industry is
the International System of units (SI), from the French name Système International
d’ Unités. This system was recommended at the General Conference on Weights and
Measures of the International Academy of Sciences in 1960 and was adopted by the
U.S. National Bureau of Standards in 1964.
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In the United States, the transition from the older English system of units to the
SI system has been slow and is not complete. The SI system is used in science
education, in government contracts, by engineering professional societies, and by
many industries. However, engineers in some more mature industries still prefer
to use English units, and, of course, commerce and trade in the United States re-
mains dominated by the English system. We buy pounds of vegetables, quarts of
milk, drive miles to work, and say that it is a hot day when the temperature ex-
ceeds 80◦F. (Wine is now sold in 750 ml bottles, though, which is a modest step
forward!)

In this text, we will use the SI system, with which the student has become familiar
from physics courses. For convenience, this system is summarized in the tables of
Appendix B. Base and supplementary units, such as length, time, and plane angle,
are given in Table B.1a; and derived units, such as force and energy, are given in
Table B.1b. Recognized non-SI units (e.g., hour, bar) that are acceptable for use with
the SI system are listed in Table B.1c. Multiples of SI units (e.g., kilo, micro) are
defined in Table B.1d. Accordingly, the property data given in the tables of Appendix
A are in SI units. The student should review this material and is urged to be careful
when writing down units. For example, notice that the unit of temperature is a kelvin
(not Kelvin) and has the symbol K (not ◦K). Likewise, the unit of power is the watt
(not Watt). The symbol for a kilogram is kg (not KG). An issue that often confuses
the student is the correct use of Celsius temperature. Celsius temperature is defined
as (T − 273.15) where T is in kelvins. However, the unit “degree Celsius” is equal
to the unit “kelvin” (1◦C = 1 K).

Notwithstanding the wide acceptance of the SI system of units, there remains a
need to communicate with those engineers (or lawyers!) who are still using English
units. Also, component dimensions, or data for physical properties, may be avail-
able only in English or cgs units. For example, most pipes and tubes used in the
United States conform to standard sizes originally specified in English units. A 1
inch nominal-size tube has an outside diameter of 1 in. For convenience, selected
dimensions of U.S. commercial standard pipes and tubes are given in SI units in
Appendix A as Tables A.14a and A.14b, respectively. The engineer must be able to
convert dimensions from one system of units to another. Table B.2 in Appendix
B gives the conversion factors required for most heat transfer applications. The
program UNITS is based on Table B.2 and contains all the conversion factors in
the table. With the input of a quantity in one system of units, the output is the
same quantity in the alternative units listed in Table B.2. It is recommended that
the student or engineer perform all problem solving using the SI system so as to
efficiently use the Appendix A property data and the computer software. If a prob-
lem is stated in English units, the data should be converted to SI units using UNITS;
if a customer requires results in units other than SI, UNITS will give the required
values.
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1.8 CLOSURE

Chapter 1 had two main objectives:

1. To introduce the three important modes of heat transfer, namely, conduction, ra-
diation, and convection.

2. To demonstrate how the first law of thermodynamics is applied to an engineering
system to obtain the consequences of a heat transfer process.

For each mode of heat transfer, some working equations were developed, which,
though simple, allow heat transfer calculations to be made for a wide variety of
problems. Equations (1.9), (1.18), and (1.20) are probably the most frequently used
equations for thermal design. An electric circuit analogy was shown to be a useful
aid for problem solving when more than one mode of heat transfer is involved. In
applying the first law to engineering systems, both a closed system and an open
system were considered. In the first case, the variation of temperature with time was
determined for a solid of high conductivity or a well-stirred fluid. In the second case,
the variation of fluid temperature with position along the heat exchanger tube was
determined.

The student should be familiar with some of the Chapter 1 concepts from previous
physics, thermodynamics, and fluid mechanics courses. A review of texts for such
courses is appropriate at this time. Many new concepts were introduced, however,
which will take a little time and effort to master. Fortunately, the mathematics in this
chapter is simple, involving only algebra, calculus, and the simplest first-order differ-
ential equation, and should present no difficulties to the student. After successfully
completing a selection of the following exercises, the student will be well equipped
to tackle subsequent chapters.

A feature of this text is an emphasis on real engineering problems as examples and
exercises. Thus, Chapter 1 has somewhat greater scope and detail than the introduc-
tory chapters found in most similar texts. With the additional material, more realistic
problems can be treated, both in Chapter 1 and in subsequent chapters. In particular,
conduction problems in Chapters 2 and 3 have more realistic convection and radi-
ation boundary conditions. Convective heat transfer coefficients for flow over tube
bundles in Chapter 4 are calculated in the appropriate context of a heat exchanger.
Similarly, condensation heat transfer coefficients in Chapter 7 can be discussed in
the context of condenser performance. Throughout the text are exercises that require
application of the first law to engineering systems, for it is always the consequences
of a heat transfer process that motivate the engineer’s concern with the subject.

Two computer programs accompany Chapter 1. The program LUMP calculates
temperature response using the lumped thermal capacity model of Section 1.5. When
heat loss is by convection and radiation simultaneously, the problem does not have an
analytical solution. However, a numerical solution is easily obtained; LUMP demon-
strates the value of writing a computer program in such situations. It is important that
engineering students be aware of the potential of scientific computing as an engineer-
ing tool and take the initiative to use computational methods when appropriate. The
program UNITS is a simple units conversion tool that allows unit conversions to be
made quickly and reliably.


